AN-776

Application Note

THE M10800 MECL LSI PROCESSOR FAMILY
— THREE DESCRIPTIVE ARTICLES —

“GET THE BEST PROCESSOR PERFORMANCE"’
By:

Tom Balph

LS/ System Engineer

and

Bill Blood

Manager, Bipolar LS| System Engineering

Motorola I.C. Division, Mesa, Arizona

Reprinted from Electronic Design, June 7, 1977, Vol. 25, No. 12.
Copyright © 1977 by Hayden Publishing Co., Inc.
All rights reserved.

“THE MSP: GTE SYLVANIA’'S MICROSIGNAL PROCESSOR"’
By:

Howard |. Cohen

G TE Sylvania, Inc., Needham Heights, Massachusetts.

Reprinted from Proceedings of Electro 77, Session 38/3, April, 1977.
Copyright © 1977 by Electro.

“NMi10800 MICROPROGRAMMED DEMONSTRATOR"
By: .

Tom Balph

LS/ System Engineer

and

lan LeMair,
Field Applications Engineer
Motorola I.C. Division, Mesa, Arizona

Reprinted from Proceedings of Electro 77, Session 31/2, April 1977.
Copyright © 1977 by Electro.

This note consists of three articles about
the M10800 Processor Family. The first article
examines the features of the processor com-
ponents. The second describes a customer’s
application of M10800 devices and the third,
an EXORciser-based M10800 microprogramming
demonstrator.

MOTOROLA Semiconductor Products Inc.

Get the Best Processor Performance

by building it from ECL bit slices.
The 10800 family offers versatility as well as
cycle times of less than 100 ns.

Prepared by :
Tom Balph, LSI System Engineer
Bill Blood, Manager, Bipolar LSI System Engineering

Motorola |.C. Division
Mesa, Arizona

Offering the fastest cycle times of any available bit- —
slice processor family, the 10800 series of ECL 4-bit Comtrol
processor slices permits you to design high-speed computer MZ:;;’V Rng.iISte' et
e

systems. Each 10800 circuit is completely expandable,
and the major system building blocks are either available
or being designed.

The core of any 10800-based system, the arithmetic
and logic unit (ALU), operates at system-clock frequencies & Bus A Bus
of 10 to 15 MHz, which represent cycle times of 60 to
100 ns. System word size starts at the ALU width of
4 bits, but can be expanded to n x 4 bits by cascading
ALU sections. To support the ALU, Motorola has

developed several ECL circuits that take care of most of
the housekeeping without restricting the processor design.

Intended to address the instructions stored in the
microprogram memory, the 10801 microprogram con-
troller provides a 4-bit address that can be expanded to
any size by cascading controllers. A memory interface
circuit, the 10803, also has a cascadable 4-bit output
bus, but it connects to the address bus of the main
memory and supplies all the read and write addresses.

Acting as a register file, stack or I/O buffer, the 10806
dual-port memory provides 32 words x 9 bits of
temporary storage and can be accessed through either of
its ports. For high-speed mathematical operations, the
10808 multibit shifter can handle up to 16 bits and, under

Microprogram
Control
MC10801

ALU

MC10800

| Bus

Timing
MC10802

Memory

Interface
MC10803

operations. Additional 10808s can be cascaded for larger
word lengths.
Other support circuits include the 10802 timing Address Data

software control, can do left-shift, right-shift or rotate l t

generator and clock controller, the 10804 and 10805
bidirectional bus translators (ECL to TTL and vice-
versa) and all of the MECL 10,000 series of logic circuits.
(All 10800 series circuits and some of the most commonly
used 10,000-series units are listed in Table 1.)

A basic processor, built from 10800-series circuits,
is outlined in Fig. 1. With a 16-bit word length, the

FIGURE 1 — With the 10800 series of bit slices, you can build a
high-performance microprogrammable processor with instruction
times of less than 100 ns.

Circuit diagrams external to Motorola products are included as a means of illustrating typical semiconductor applications; consequently,
complete information sufficient for construction purposes is not necessarily given. The information in this Application Note has been care-
fully checked and is believed to be entirely reliable. However, no responsibility is assumed for inaccuracies. Furthermore, such information
does not convey to the purchaser of the semiconductor devices described any license under the patent rights of Motorola Inc. or others.

A Bus
® Bus
‘ A
1
AS16 Latch MUX [
(LC) —
Output ASH5
AS2 ———:@sk Bus
AS3 Cont AS6
|
ASO
PG —=— AS1
GG ~—— Arithmetic AS4
COUTa— Logic - AS10
PAR | Unit AST1
CAR AS12
OF =& CIN
l ‘ Accumulator CLK
R4 -—p AS9
' MUX AS15
o P — Shift
PAR w-g—] Network [» R-1
RES T
AS13—mm Input Bus AS8
AS14 Cont
AS7
| Bus

FIGURE 2 — Capable of 28 logic and 23 arithmetic operations as
well as 16-data-routing options, the M10800 4-bit ALU slice
can form the heart of a flexible computer system.

processor would typically consist of four 10800s, two
or more 10801s, one 10802, four 10803s, one 10179
(look-ahead carry generator), several 10145s or 10143s
for a register file, some microprogram and main memory,
and of course some logic glue (SSI and MSI packages).
But getting all the parts to work in unison can be quite
tricky unless you know how they work.

TABLE 1
M10800 Components and Support
Part
Number Description
MC10800 Arithmetic and logic unit
MC10801 Microprogram sequencer
MC10802 Timing function and clock controller
MC10803 Memory-interface circuit

MC10804 4-Bit bidirectional bus translater (ECL/TTL)
MC10805 5-Bit bidirectional bus translator (ECL/TTL)
MC10806 Dual-port address register (32 x 9)
MC10808 Multibit shifter

MCM10143 Multiport RAM (8 x 2)

MCM10145 | Single-port RAM (16 x 4)

MCM10146 | Single-port RAM (1 k x 1)

MCM10149 | ECL PROM (256 x 4)

MC10176 Hex, master-slave flip-flop

MC10179 Lookahead carry generator

GET TO KNOW THE ALU

Start with the core. The 10800 4-bit ALU slice can
perform both binary and BCD arithmetic and logic
operations on combinations of one, two, or three variables.
All 10800 operations are too numerous to list but some
commonly used commands include 28 logic, 23 arith-
metic and 16 data-routing combinations as shown in
Tables 2, 3, and 4, respectively. Housed in a 48-pin
quad-in-line package (QUIL), the ALU slice offers a
flexible organization (Fig. 2).

There are. three 4-bit ports on the 10800: an input-
only data bus (A bus) and two bidirectional buses (¢ and
I buses). The A and Q buses are the primary data-entry
ports, and the I bus is the main output bus. Accepting
data from the A bus, @ bus and/or the internal accumu-
lator, the ALU performs its operations under the direction
of 17 selection and control lines.

The three buses and select lines account for 29 pins on
the 10800. Another eight pins are required for power
(four for grounds, two for -2 V and two for -5.2 V).
Five additional lines provide ALU-status outputs, another
line is for the clock input, one more for the carry input,
and two for parity outputs (one for the carry parity and

TABLE 2
Basic ALU Logic Commands
Y MUX XMUX [INV | Acc Function
ASO | AS1| AS2 | AS3 |AS10|AS5-AS6
0 1 0 1 1 0 Logic O
0 0 1 0 1 0 A
0 0 0 1 1 0 0]
0 0, 1 0 0 0 A
0 0 0 1 0 0 0]
0 0 1 1 1 0 A+Q
0 1 0 0 0 0 A+Q
1 0 0 0 0 0 A+Q
0 0 0 0 1 0 A-Q
0 1 1 1 1 0 A-Q
0 1 0 0 1 0 A-Q
0 1 1 0 1 0 A®O
0 1 1 0 0 0 ADO
0 0 0 0 0 0 A0
0 0 1 1 0) A+ 0
0 1 0 1 0 0 L.ogic 1
1 0 1 0 1 1 ACC- A
0 1 0 1 1 1 ACC- @
1 0 1 0 0 1 ACC+A
0 1 0 1 0 1 ACC+0
0 0 1 0 1 1 ACC® A
0 0 1 0 0 1 ACCO® A
0 0 0 1 1 1 ACCO® 0
0 0 0 1 0 1 ACC D0
0 0 0 0 1 1 ACCO®A-0
0 0 0 0 0 1 ACCOA-Q
0 0 1 1 1 1 ACCOA+0Q
0 0 1 1 0 1 ACCOA+OQ

TABLE 3
ALU Arithmetic Operations

Binary Function BCD Function
Y MUX X MUX +2 Complement ACC (plus Cjp) (plus Cjp)
ASO AS1 AS2 AS3 AS4 AS10 AS5-AS6 AS11 =1 AS11=0
1 0 0 1 1 1 0 A plus @ A plus @
1 0 0 1 1 0 0 A plus @ A plus 9's comp. @
0 1 1 0 1 0 0 @ plus A @ plus 9’s comp. A
0 0 1 0 1 1 0 A A
0 0 0 1 1 1 0 o (0)
0 0 1 0 1 0 0 A 9's comp. A
0 0 0 1 1 0 0 o 9's comp. @
1 1 1 0 1 1 0 -1plus A *
1 1 0 1 1 1 0 -1plus @ *
1 1 1 0 0 1 0 -2 plus A *
1 1 0 1 0 1 0 -2 plus @ *
0 0 1 0 0 1 0 +2 plus A +2 plus A
0 0 0 1 0 1 0 +2 plus @ +2 plus @
1 0 1 0 1 1 0 A plus A A plus A
0 1 0 1 1 1 0 @ plus @ @ plus @
0 0 1 0 1 1 1 ACC plus A ACC plus A
0 0 0 1 1 1 1 ACC plus @ ACC plus @
0 0 1 0 1 0 1 ACC plus A ACC plus 9's comp. A
0 0 0 1 1 0 1 ACC plus @ ACC plus 9's comp. @
0 0 0] 0 1 1 1 ACC plus A-Q ACC plus A-Q
0 0 0 0 1 0 1 ACC plus AQ ACC plus 9's comp. A-Q
0 0 1 1 1 1 1 ACCplusA+Q *
0 0 1 1 1 0 1 ACCplusA +0Q *

*Not defined in BCD

one for the result parity). And two more control the
shift-left/shift-right operation of the ALU’s output-shift
register. Shifting is possible for the A or () bus as well as

TABLE 4
Data-Transfer Paths in ALU
Function
ACC Shift
AS7 | AS8 | AS9 | AS15 | Source | Source Input Bus
0 0 0 0 RES ACC Disable
0 0 0 1 0B ACC Disable
0 0 1 0 1B ACC Disable
0 0 1 1 ACC ACC Disable
0 1 0 0 RES ACC ACC
0 1 0 0 B ACC RES
0 1 1 0 1B ACC RES
0 1 1 1 ACC ACC RES
1 0| o 0 RES Fout Disable
1 0 0 1 0B Fout Disable
1 0 1 0 1B Fout Disable
1 0 1 1 ACC Fout Disable
1 1 0 0 RES Fout ACC
1 1 0 1 0B Fout RES
1 1 1 0 B Fout RES
1 1 1 1 ACC Fout RES

the accumulator. Also various add or subtract/shift
combinations can be performed by using the shift net-
work with the ALU.

Whether the ALU does binary or BCD arithmetic, the
speed of the operation remains the same: A 9’s com-
plement circuit is built in and automatically enabled
whenever BCD operations are performed. In addition,
only one line, AS11, must change state to switch
operating modes (see Table 2).

A masking multiplexer on the chip precedes the ALU
and performs bit manipulations on incoming data. An
on-chip accumulator can hold data for ALU operations.
The I and @ ports are connected to both the ALU and
accumulator thus increasing data processing flexibility.
With the accumulator, A bus, and @ bus as operands, any
of the functions listed in Tables 2, 3, or 4 can be per-
formed in one pass through the circuit.

The status-output lines from the 10800 include the
carry-propagate and carry-generate signals for look-ahead
carry operations. A carry-output signal is available when
slices are cascaded, without carry look-ahead. And also
available are an overflow output used only for binary
operations for indicating when the maximum output from
the ALU has been exceeded, and a zero-detect line for
indicating when an all-zero condition exists in the output
of the ALU shift network. The overflow output can also
be used to detect sign changes that stem from a shift
operation.

Exten_der Next Address Instruction Control
Din Bus XB NAO—NA3 ICO—1C3
‘ i Y ‘
cso . Status © ba¢——— B-Branch
CS1 —b»
Control .
CS2 — Logic Next Address Logic csa
cs3 ‘ l@——— Branch
Status) [\] Enable
Control
IS"F?(Repeat - Cin
(c Rt:C Register Incrementer
CR7) (CRT) ® Cout
Control Memory
] Address Register
CLK * ——pl Status (CRO)
Register it
RST (CR3) {
Reset* ARE v o
CS5
Bus . Buffer
— Control - |l’lStrLfct|on CMA Enable
*CLK and RST Logic < Register
To All Registers . ‘ (CR2)
CR30—CR33 IBO—1B3 CS6CS7CS8 ¢ BO—¢ B3 CROO—CRO3
Status Outputs | Bus Bus Select ¢ Bus Control Memory Address
FIGURE 3 — Controlling the microprogram addressing, the has a repertoire of 16 program-flow commands. It provides a

M10801 microprogram sequencer generates the next address and

MANIPULATE THE ALU WITH THE MICROPROGRAM

When a processor is built from 10800 ALU slices, a
microprogram selects an ALU operation every clock cycle.
The 10801 controller (Fig. 3) determines the next micro-
program memory location to be addressed. It performs
incremental sequencing, handles jumps, conditional
branches, subroutines and repeat loops.

Inside the chip, the control-memory-address register
(CRQ) holds the microprogram address that accesses the
next instruction. A next-address logic block, controlled by
various signals, selects the microprogram’s next instruc-
tion address and routes it to the CRQ inputs.

The 10801 has 16 instructions to control the program
flow (Table 5). These commands include incremental
sequencing and several types of jump address operation.
Sources of jump addresses include the I and @ bus, the
next address inputs, CR1 and CR2.

Conditional operations include a branch on condition
command ‘that looks at the branch input line B, ‘the
branch expansion input XB or status bits in the CR3
register and makes a program flow decision. Another
instruction, the BRM (branch and modify) command,
uses the branch status input, B, and the XB line to modify
the next microprogram address for a four-way branch in
the program.

Subroutines can operate in either a repeat or nonrepeat

4-bit section of the address.

mode. The nonrepeat operation is simply a jump to
subroutine followed by a return to subroutine. However
in the repeat mode, the current subroutine is automatically
repeated a specific number of times, as determined by
the CR1 register contents.

Other registers inside the 10801 contribute: to the
microprogram sequencing. The CR{ register can be used
either as a cycle counter for repeat sequences or to store
a microprogram address when servicing interrupts.
Register CR2 can hold a machine-instruction starting
address or an interrupt vector for microprogram flow
jumps.

The CR3 register stores the status bits for conditional
program jumps. These bits are most often external signal
lines, such as interrupts or test points.

Sometimes, the ALU’s condition-code bits are held
in CR3, but usually they are stored in a separate register
controlled by the microprogram. Select lines CSg, CSjy,
CS», and CS3 control the CR3 status register and permit
it to store or read individual bits. All status conditions
are available as outputs.

Another bank of four registers, CR4 to CR7, forms a
last-in, first-out (LIFO) stack to next subroutines. Con-
trolled by the next-address logic block, the stack can be
extended through the () port bus with external memory.
Also, should an emergency power-down or priority
interrupt be signaled, all the register’s contents can be

Table 5

Program-Flow Commands for the 10801 Controller

Code Reset| Branch or LIFO Stack
Mnem | IC3|IC2(IC1|ICO Description RST | Repeat Condition CRO CR1 CR2 CR4—-CR7

X X X[X | X Reset condition 0 X 0 0 0 |"Push” CRO to stack
iINnc | 1]1]0]o0 Increment 1 X CRO plus Cipn - - -
JMP 0 0 1 0 Jump to next address 1 X NA — _ —
JIB 1 0 0 0 Jump to | Bus 1 X 1B-NA - — —
JIN 1 0 0 1 Jump to | Bus & load CR2 1 X IB-NA — 1B —
JPI 1 0 1 0 Jump to primary inst. 1 X CR2-NA — — -
JEP 1 1 1 0 Jump to external port 1 X @B-NA - — —
JL2 0 0 0 1 Jump & load CR2 1 X NA - IB —
JLA 0 0 1 1 Jump & load address 1 X NA CRO plus Cjp, — —

JSR 0 0 0 0 Jump to subroutine 1 Repeat NA — — | ""Push’’ CRO to stack

1 Nonrepeat NA — — | ""Push” CRO plus Cjpy

RTN | 1 1 1 1 Return from subroutine 1 Repeat CR4 CR1plus Cijn | — | ‘““Pop’ stack to CRO

1 Nonrepeat CR4 — — "Pop”’ stack to CRO
RSR | 1 11 0|1 Repeat subroutine 1 X CRO plus Cjpy NA — -
RPI 1 0 1 1 Repeat instruction 1 Repeat - CR1 plus Cjp - -
1 Nonrepeat CR1-NA - — -
BRC 0 1 0 1 Branch on condition 1 Branch =1 NA ~ — —
1 Branch =0 CRO plus Cjpy - - -

BSR 0 1 0 0 Branch to subroutine 1 Branch =1 NA — — {"Push’ CRO plus Cj,
1 Branch =0 CRO plus Cipy - - —

ROC | O 1 1 1 Return on condition 1 Branch =1 CR4 — — | "Pop”’ stack to CRO
1 Branch =0 NA - — —
BRM | 0 1 1 0 Branch & modify 1 CS4 =1 NA - — —
1 CS4=0 CR0O0=NAO-B - - —
CRO1 =NA1-XB — - —

CR0O2 = NA2
CRO3 = NA3
“dumped” through the @ or I bus ports. The reverse tion. A 4 x4 register file can be used as a program counter,

data flow is also possible—all registers can be loaded
through the same ports.

The 10801 provides a 4-bit section of the micro-
program address, and any number of controllers can be
cascasded. For instance, two 10801s can control 16 pages
of 256 words. One of the available CR3 registers makes
a handy page-address register while the other available
CR3 register can be used to hold status information.
Larger systems might use three 10801s to address up to
4096 words directly or 16 pages of 4096 words each.

The 10801 has five I/O ports—the CRp, CR3, I bus,
@ bus and NA inputs—which account for 20 of the
48 pins on the QUIL package. Another nine pins are used
for the select lines, four more are the instruction inputs,
and eight are needed for power and ground. Two more
pins form the carry-in and carry-out lines for cascading,
one is for the clock input and four take care of other
control functions.

MAIN MEMORY ALSO NEEDS A CONTROLLER

To generate main memory addresses for any 10800-
based system, the 10803 I/O controller interfaces to the
main memory and peripherals via the address and data
buses. I and () bus ports interface to the other system
components. A memory-data register inside the 10803
chip (Fig. 4) holds incoming or outgoing data, and a
memory-address register (MAR) holds outgoing informa-

a stack pointer, an index register or other related
functions. Its output feeds into the simple ALU or into
the multiplexer input to the memory-address register.

A data-matrix block controls the transfer of data
between various internal registers and I/O ports. Seven-
teen data-transfer operations are possible (Table 6a and
b), and they are controlled by inputs MS(to MS3, MS3
and MS14. The MSj4 line permits any combination of
positive and negative logic . formats by inverting any
data on the data and address buses. Once selected, any
transfer can be performed within one microinstruction.

The 10803’s ALU performs AND, OR, Exclusive-OR,
add, subtract, shift-left and shift-right operations to
compute the extended, indexed and relative addresses
and perform stack-pointer operations. Controlled by the
microfunction and destination-decode logic, the ALU
gets operands from the @ or I bus, the MDR, the register
file, the program counter, the MAR or the P inputs. The
four P-input lines are pointer inputs that can be used to
add address offsets, increment or decrement the address,
or supply mask bits. And since independent select lines
manipulate the ALU and data matrix, the 10803 can per-
form two independent parallel operations during one
microinstruction cycle.

Housed in the same 48-pin QUIL case as the 10800
and 10801, the 10803 has its pins allocated as follows:
four 4-pin buses for memory data, memory address,

ws1a MSO - - Ms3
Register J l l ¢
File n | Bus
Data -
- Interface —
o P
6 _-_——a L us
s > r |
Address | g | [PC(MRO) HA
Bu « o« x Aavrram
< fea <t D et ! MDR MS12
= S5, 1| _MR2
I'{ ™MR3
L= MS13
Msa
Clock
X ped
I O
MS5 —f — S 4
MS6 =~ £ 5o = <
MS7 - T @0 [ALU
=
MS8 =+ 3 £ o
£ 8o ™ X
Mso = 208 (e 2
Msio= 524 > ‘ ‘ o
5
MST1 -+ "’
a GG PG Cjy/C
in out P
OF 7D R. R4 ointer
Inputs

TO SYSTEM MEMORY
AND PERIPHERALS
Data
Bus Input Bus 6 Instruction
Py . b—
16 ; Mapping
CC REG
Memory Register ‘
Interface File
16 10803's 16 NA
] A Bus 16 Fie'dl
16 Output Bus)
-t P Inputs Program o]
Control
Address »
Bus
Control
Bus Microprogram Address —* | Field -=
1
a4
Timing and Status '
Interrupt St.atus Field
~=—| Docode [Field ey |
10802 Decode
To ALU ~&——] ALY ALU
5 Function 4 £ nction
i Decode Field | et
To CC Reg = g
o
3
To 10803 =g o8
Clock to Control g Mem?f\/ Mlemory
All Registers a Function {~ Function
Decode Field
Fe
P Field
RF Field
To RF —a——
Microprogram
Storage

FIGURE 4 — Built with five I/O ports, the M10803 memory
interface circuit offers very flexible operation along with 17
different data-routing instructions.

input and output, four more pins for pointer inputs,
11 more for data and address-select lines, another eight
for power, one for output enable, one for a clock, two
for carry lines, two for register-file select, two for carry
propagate and generate, and one for data and address
inversion.

To get all the blocks to work in unison, the 10802
timing function circuit generates up to four clock phases
from a single-phase oscillator input. It also allows for
system starts and stops, and has a single-step control for
diagnostic purposes. Both the number of clock phases
and their duration are programmable through seven
select lines.

The 10802 is housed in a 24-pin DIP with seven pins
pins for the select inputs, four for the phase outputs,
three for power, one for the clock input and nine for
controls. Several timing circuits can be cascaded if more
than four clock phases are needed. The 10802 can also be
programmed to compensate for one slow path without
slowing down the faster sections by doubling the duration
of any clock phase.

SYNCHRONIZE ALL THE LOGIC BLOCKS

At this point, getting all the parts to work together
is a matter deciding on word length, system architecture
and microprogramming structure. A generalized 16-bit
minicomputer architecture, based on the 10800 series,
is shown in Fig. 5. The system uses a pipelined archi-

FIGURE 5 — A generalized 16-bit minicomputer can be based on
the 10800 bit slices. lts pipelined architecture offers the best
performance technology can provide.

tecture to keep the cycle time as fast as possible. The
actual fetch and execution of a microinstruction are
accomplished in two clock cycles. The next instruction
is being fetched while the current instruction is being
executed.

A microprogram control cycle consists of addressing
the microprogram memory, setting up a new address
(through the 1 and NA fields) and clocking the new
address to the 10801’s CR() register, which starts the cycle
all over again. During the control cycle, new data-
processing and memory interface operations are accessed
and clocked into the pipeline register. A status-field, also
held in the pipeline register, is used to select branch
conditions, update interrupt status, and reset the system,
among other functions. The number of microprogram
memory bits is minimized by decoding the various fields
from the microprogram memory.)

Before setting up a microcode to control all these
operations, a system architecture and instructions set
must be defined. Look at a master-slave system that uses
a 6800 microprocessor as a controller and an 8-bit,
10800-based processor to rapidly perform complex
mathematical operations (Fig. 6). For more about the
6800, see ‘“Microprocessor Basics: Part 5 ED No. 15,
July 19, 1976, p. 66. The arithmetic subsystem, called
the MOD processor, can be built on three EXORCciser-
compatible boards.

The 6800 acts as the master controller for the MOD,

Table 6
Memory-Controller Commands

MS ms
3210 | 514 | Mnemonic Operation
0000 | — — NOP No operation
0001 | — — AlB ALU to IB
0010 | —— ODR @B to data register
0011 | — — ADR ALU to data register
0100 (0 O BRF DB to register file
01 DB to register file
10 BAR DB to address register
11 DB to address register
0101 |—0 BIB DB to IB
-1 DB to IB
0110 -0 BDR | DB to data register
-1 DB to data register
0111 | —— IDR IB to data register
1000 |- 0 FDB | Register file to DB
-1 Register file to DB
1001 |- 0 RDB | Data register to DB
-1 Data register to DB
1010 -0 ODB |0@Bto DB
-1 @B to DB
1011 | -0 PTB | Data register to DB; IB to DR
-1 Data register to DB; IB to DR
1100 | — — FOB Register file to @B
1101 | — — ROB Data register to @B
1110 -0 PFB Data register to @B; DB to DR
-1 Data register to @B; DB to DR
1111 | — — MOR Data register to @B; IB to DR
Operands Functions Destinations
@ bus A plus B | bus
| bus A plus B Address register
Address register A-B, A-P Data Register
Data register A+B Register file
Register file A®BA®FP Program counter
Program counter A plus A
Pointer inputs Shift right
A plus P
PC plus B
AR plus B

and although the MOD runs independently when number
crunching, the 6800 oversees the data transfer, and loads
and modifies the microprogram storage. The actual MOD
number-crunching section consists of two 10800 ALUs
and 16 register-file locations made from the 10145 ECL
RAMs (Fig. 7). Data entering the MOD are routed through
the ALU and into the register file. The accumulator,
register file and condition-code register are loaded directly
from the outgoing data bus.

Five bits contained in the condition-code register are
used to indicate the following:

1. Carry output from the most-significant bit of the
ALU (C).

2. Two’s complement arithmetic overflow (V).

3. Zero detect output of the result (Z).

4. Sign of the result (N).

5. Link bit for shifting (L).

Two 10801s are used to sequence through the micro-
program storage. When cascaded, they are connected to
generate both an 8-bit word address and a 2-bit page
address. The memory is thus organized as four pages
of 256 words each. The microprogram memory for the
MOD consists of 1024 words of RAM, each 32-bits wide.

This writable control store is built from 32 1-k RAMs
(10146s) and is loaded with instructions by the 6800
controller. Each 32-bit word is divided into six fields
(Fig. 8):

1. ALU field—six bits that control 61 ALU operations
(ALU).

2. Condition-code field—three bits that control eight
functions (CC).

3. Register-file field—six bits that hold the register-file
address, the register-file write enable and the accumulator
write enable (RF).

4. Status field—five bits that contain 31 operations to
control branch operations for the 10801, the CR3 register
and page addressing (S).

5. Instruction field—four bits that handle micro-
program address functions (I).

6. Next-address field—eight bits that control jump
addresses and constants (NA).

Both the I and NA fields feed back to the 10801 from
the microprogram memory, and control the address
generation and sequencing. The other four fields are
pipelined to quicken system operation. To minimize the
number of control bits needed in the microprogram
memory, the ALU functions, which normally need 12
lines, are encoded into three 10149 PROMs, which are,
in turn, fed by the six bits of the ALU field. Located
before the pipeline register, the decoding PROMs do
not reduce system speed.

The system software for the 6800/10800 combination
consists of four parts written in 6800 code:

L. System initialization and writable control-store
monitor to interface with the control storage.

2. A punch or memory dump to store the control
memory contents in cassettes.

3. A memory load from cassette.

4. A monitor to control, load and receive data from
the processor.

LOAD THE CODE IN BYTES

Information from the 6800 is written into the writable
control store in 1-byte chunks, with four individual
writes from the 6800 needed for each microword. After
all the operations you want the 10800 to perform have
been defined, your next task is to write the microprogram.
If programs are to be written by hand, a tabular listing,
as shown in Table 7, can simplify the procedures.

Line (1) represents a complete microinstruction in
mnemonic form. Each of the field columns defines an
operation performed by the microword: INC—increment
address; X—don’t care for next address; INHS—inhibit
status; BADA—binary-add register field and accumulator;
LAR—load Z, N, C and V condition-code bits; RFB—
register B; FE = 0—disable register-file write; and AE = 1 —
enable accumulator write. In “English” the microword
tells the machine to increment the address, add register B

Ll]

e

|
|
Incoming Data Bus 8 |
——'»{ > > a 4
Buffer l
; Incoming Data Bus 8 |
| 8 File Bus 1 !
. : |
| 4 Microprogram
| Control ;
, \ |
M6800 | | ALU 18 L[N] z]v]c SRS NA Field 8
System | (10800 Slices) 7
| Condition CR2 | Field. 4 |
s K ’ |
| ACC Code Register CR1 10801s 1= Ea— Writable
; CRO PAR : Microprogram
i I [:Page Address | Storage
| Register 5 / > (1 k x 32)
I T8 File T 2(4) word |
| i 8 Address 8 !
< }4 4 |
| o — e b L »l
]
: . }5
| Status Field
Status
Decode N
CC Field 6
To CC Register —a 6
ALU |ALU Field|]
To ALU = Decode
To RF and ACC ~-——f -
RF Field
Control
Lookahead

Register @
(Pipeline)

FIGURE 6 — With a 6800 uP acting as controller, a dedicated
arithmetic processor can be built from 10800-series components
(a). Multiply operations can be done in less than 1/100 the time
needed by the 6800 alone. Only three EXORciser-compatible
boards are needed to build the slave processor (b).

Incoming Data Bus File Bus
A Port ¢ Port
' L [N] ZT \Y l c
Register
File Condition
(10145) Code Register
ALU
(10800s)
ACC
_J
| Port

Outgoing Data Bus

FIGURE 7 — The data-processing section of the MOD boards
consists of an 8-bit ALU, a 16 x 8 register file and a condition-
code register.

RF Enable

| Field NA Field
NN
[EEENEEELEE NS DA RN AR nE |

S (N

Status ALU cc RF

Field Field Field Add
ACC Enable

FIGURE 8 — The microinstruction that controls MOD operation
is subdivided into six fields that control smaller sections of the
processor.

RFO + ACC = ACC

Load z’,'

Yes

» Address OOF

Address 003

FIGURE 9 — Describing the operation defined in Table 7°s line (2),
this simple flow chart shows how the sequencer can perform
a branch operation.

TABLE 7
Sample Microprogram Listings

Next RF| F| A
Addqg| I. Field | Address | Status | ALU [CC |Add | E | E
(1) 000 INC X INHS {BADA [LAR| B 0|
(2) 001 INC X TSTN | TIB | IHB| O oo
002 BRC QF INHS | TIB | IHB| O oo
003
00F
(3) 044 RSR F 8 INHS | ZERO | IHB | O 0| 1
045 JSR 4 C TSLS | TRF | IHB 1 0
046
04C BRC 4 E INHS | TIB | IHB| O 0| o0
04D JMP 4 F INHS [LSRA | LDA| O o1
04E INC INHS | ACSR | LDA| © 0|1
04F RTN X INHS | RORF | IHB 1 110

Initial Conditions:

RFO = Multiplicand
RF1 = Multiplier

Step 1 ‘0" — ACC

’0" — Counter
Step 2 If RF1 gg =0, Go to Step 4
Step 3 Add (ACC) + (RF0) = ACC
Step 4 Shift (ACCRF1) One Bit Right
Step 5 Increment Counter,

(Counter) + 1 — Counter
Step 6 |If Counter # 8, Go to Step 2
Step 7 End | ACC = Upper Half Product

RF1 = Lower Half Product

@

to the accumulator with the result returned to the
accumulator, and load all condition-code bits except the
link bit.

The second line of the program, (2), continues the
instruction at address 000 to the instructions at addresses
001 and 002. A register-file-add-to-accumulator instruc-
tion given in address 000 is followed by a branch
operation at address 002 (Fig. 9). The I-field address
advances to 002. If N equals -1 the branch occurs, and
advances the address to QQF, as specified by the NA
field. If N equals 0, a simple increment instruction is
performed.

A more complex example is an 8 x 8-bit binary mag-
nitude multiply. For this example let the contents of RF(
be the multiplicand and RF{ be the multiplier. The 16-bit
product will be stored with the eight MSBs in the accumu-
lator and the lower eight bits in RF|. To perform the
multiplication, use an add-shift algorithm that repeats
eight times (Fig. 12). The initial instruction at address
044 loads F8 into CRy (the 2’s complement of 8) to
control the number of repeats, and loads O into the
accumulator. The repeat loop is started at address 045
with the JSR command.

10

CR1+ 1~ CR1

45 — Stack 46 — Stack

0 — [—[0] ¢ - [FForacc)-(D
[0 —[F1)

No

Stack = 45
Yes, @ - RSQ
Stack = 46

FIGURE 10 — To perform an 8 x 8-bit multiply operation,
a simple add and shift routine can be written an iterated eight
times (a). The same routine can be expressed in flowchart form (b).

Statement 045 sets up the test condition for the BRC
at statement @4C. The ALU and status operations com-
bine to put the contents of RF] on the output-data bus
and test the LSB (RF} — OB, Branch = LSB). Also,
because of pipelining, this operation occurs in the micro-
program one statement before the branch operation.
As a result of the branch decision, either instruction Q4D
or Q4E is executed. If (4D is used, the contents of the
accumulator are shifted one bit to the right, which is the
same as adding zero to the accumulator and then shifting.
Instruction Q4E adds the contents of RF(to the accumu-
lator and then shifts the accumulator one bit right. The
carry-out from the ALU, (C), is shifted in the partial
product to maintain the correct number.

Following the add-shift operation, the RF] register is
shifted right one bit (instruction (4F), which stuffs the
link bit. This operation extends the product into RFj by
one bit and moves the next muliplier bit into position for
the next iteration. After the final iteration, the program
jumps to 046. A more complex example is a full floating-
point, single-precision multiply operation with two 32-bit
numbers that have an 8-bit sign and exponent and a 24-bit
mantissa. With a 10 MHz clock the MOD processor needs
37.6 us to perform the operation—less than 1/100 the
time of an equivalent software multiply in the 6800.

THE MSP: GTE Sylvania’s Microsignal Processor

Prepared by :

Howard I. Cohen

GTE Sylvania Incorporated, Eastern Division
77 ‘A" ‘Street

Needham Heights, Massachusetts 02194

SUMMARY

Over a two-year period, GTE Sylvania examined the
attributes of several bipolar bit-slice devices including the
AMD?2901, MMI6701, Intel 3001, and the MOT 10800,
against the criteria of maximizing system speed in a
real-time computational application and minimizing
manufacturing production costs.

The 10800 was chosen because of its ready adapt-
ability to a multi-bus architecture, higher speed and
powerful family of support components. To ensure
maximum flexibility in many different applications, a
macro-code rather than a micro-code system was con-
figured. It was given an effective three-address architecture
and a Register File with 32 general purpose registers.
Dual ALUs, one for index processing and one for general
arithmetic operations permit simultaneity of actions of
effective address calculation, incrementing or decrementing
of index registers to manage data address selection, and
arithmetic functions. Computational power is provided
by the three-address (3-bus) structure which can be used
with a REPEAT instruction to permit treating blocks of
memory as arrays. Thus, in two lines of machine code
(REPEAT, ACCUMULATE MULTIPLY) an entire auto-
correlation calculation can be performed.

Control flexibility is ensured by mutli-function
instructions such as REPEAT-COMPARE, a BIT TEST
and BIT ALTER capability over every bit in memory.
The separation of Program Memory and Data Memory
ensures both speed of execution and ease of PROM
implementation of dedicated applications. A very
versatile I/O structure using memory managed I/O
components permits easy adapting of 1/O to a
particular application.

Future systems’ will use more of the planned 10800
family products to improve performance and lower
manufacturing costs.

PREFACE

Two different areas are covered in this paper. One
reviews the factors that influenced technical decisions in
developing a very powerful computer using elements of
Motorola’s Emitter Coupled Logic new LSI family called
the 10800 series!. The other is the system itself and how
the system configuration exploits the features of the
10800 family.

This paper assumes that the reader is conversant with
the ISP (Instruction Set Processor) view of a computer,
and more specifically with the published specifications
and features of elements of the 10800 family. No attempt
is made here to describe the elements as components, but
rather how we have used them.

1

BACKGROUND

Over two years ago, GTE Sylvania’s Eastern Division
undertook an examination of the suitability of bit-slice
LSI microprocessor devices for use in a family of
advanced programmable signal processing systems. Its
present family, called the PSP (Programmable Signal
Processor)? has been used for several years in Linear
Predictor Encoder,>* Modem® and general filter appli-
cations interfaced to a variety of communication circuits.
Its nominal performance characteristics are in the order of
2 to 4 MOPS (Million Operations Per Second) and perfor-
mance approximately twice this capability was the goal
for a new system, presumably using LSI components.

Devices were studied both in the lab and in possible
system configurations including the Intel 3001, AMD2901,
MMI6701 and the Motorola 10800 family. Detailed
configuration designs were begun about a year ago. The
10800 was chosen over the others for three key reasons:

1. Its inherent speed, typical of the general competence
of the ECL 10K family to support very fast, complex
logical structures and drive 50 ohm distributed lines, is
also capable of forming a full 16-bit sum, measured at
under 40 nanoseconds.

2. The inherent architecture of the 10800 which is a
three-port device, permitting it to be configured into
a three-address, i.e., source-source-destination structure.

3. The family of ECL-LSI support devices, both
available now and planned for this calendar year from
Motorola. These include elements destined to enhance
system performance as well as reduce system parts
count and manufacturing costs.

This paper will describe the general structure of GTE
Sylvania’s MSP (Micro Signal Processor), a prototype of
which has been fabricated and is undergoing application
benchmark testing in our laboratories in Needham,
Massachusetts. Emphasis will be given to exploitation
of the 10800 family in order to realize operation in the
4 to 8 MOPS range.

SYSTEM ORGANIZATION

A decision based on a tradeoff study was made very
early in the effort to implement a ‘‘classical-mini’ rather
than building a “‘wide-word” microprogram system, even
though they are becoming more popular with the use of
the bit-slice devices. This decision arose from the belief
that ease of software function both in off-line development
support and application was very important. Additionally,
there was a very strong desire to salvage a large body of
operational PSP code, at least at the symbolic language
level. These strategies were tempered by the decision
that the new MSP must be like, but not the same as the
old PSP. This decision ensured that the architecture could
be optimized to the devices, both present and future.

The computer system contains a full three bidirectional
bus structure, uses a 16-bit data word and a separate
32-bit instruction word, not unlike a microprogrammed
system, but with an instruction code format and organi-
zation characteristic of a macro-level ISP. The physical

division of data and program memory has two advantages:
it permits independent access to improve operating speed,
and easy expanding or contracting of the size of either

data or instruction word independently of each other. L
Other important overall features include an ISP heavily 1l R—

inclined toward arithmetic and decision-making functions.
The emphasis in the 1/O area is on control and versatility
rather than speed or high volume data handling. The 1/O
was made versatile in order to accommodate very
different application interfaces.

The busing structure exploits the inherent three-port
capability of the 10800 family. The explicit functions
of the three buses were carefully adapted to exploit the
capabilities built into the 10800 and 10803. Not every
desirable feature was found in these two key components,
nor was every available feature used. However, the
prevailing assessment is that these components have been g
conceived for relatively specialized functions and they
became the keystone of our design. After many attempts

at alternative configurations, the one shown in Figure 1 °
was adopted. The ‘‘source” buses are called the
OPERAND bus and the DATA bus. The destination or ~

MULTIPLIER

MLY

RESULT bus inputs results back to memory. The system
uses four 10800s for the Arithmetic Subsystem, and
four 10803s for an Index Processor.

I

EXTENDED REGISTERS .‘
All registers that are meaningful to the programmer are ﬂ g 2
addressable and are called XR (extended registers). N 5555 H
These include the ACCUMULATOR in the 10800 'J' N AN g
which functions as the Arithmetic/Logic element. The : | g
XRs also include the four file registers on-board thé e Mo - B
10803, the first of which serves as a STACK POINTER R
register, while the last three are used as SIRs (Super 2 —
ik E %

OPERAND BUS

Index Registers) which in turn support and index three
address type operations. Note that all four registers are
vitally involved in calculating or managing data memory
addresses. Thus, the key parts of the 10803 including the ou

on-board ALU and MAR are pressed into service to i

perform a memory interface function, namely, index

processing on the one hand and subroutine jump and ﬁ

return management on the other. The on-board MDR i E
(Memory Data Register) is used bidirectionally to buffer
memory, but is transparent to the software.

Another XR is the REPEAT register which counts
executions at a fixed setting of the Program Counter.
Originally, these were to be included in a Program
Memory Interface made up of four more 10803s, but we
felt that such a use of the 10803 was an extreme overkill
for the required functions, the most complex of which is
incrementing or decrementing. Instead, we chose to use
simple hex counters.

Another XR is the STATUS register which gets most
of its inputs (SIGN, ZERO, CARRY, OVERFLOW and \H
LINK) directly from the ALU. It also contains an J
internal interrupt mask for interrupts based on the status
bits. Another status bit is the REPEAT bit which, when
set, freezes the program counter and repeats the instruc-
tion at that location a number of times based on the E
contents of the REPEAT register. Three more XRs are
used for the generic I/O and are discussed in the 1/O
subsystem description.

RESULT BUS

MEMORY

DATA

PROGRAM
COUNTER

CONTROL
ROM

PROGRAM | S/
MEMORY

ROM

CONTROLLER

FIGURE 1 — Microsignal Processor

12

REGISTER FILE

A 32-word by 16-bit general purpose register file sits
between the DATA bus which receives its output and the
RESULT bus which supplies its input. It serves two
explicit functions: functioning in the capacity of up to
32 accumulators, using any of the three SIRs as index
registers, or in the capacity of up to 32 different Index
Registers for data memory address calculations.

BUS UTILIZATION

The utilization of the buses follows a well-structured
pattern. The OPERAND bus gets the principle input from
Data Memory. However, if the OPERAND is to be a
LITERAL, that is, the OPERAND is contained in the
instruction word (see Chart 1), then LREG#1 becomes

2-pass 8 by 16 MSI multiplier. The DATA bus is used for
RF and XR outputs and is also the return path to Data
Memory. The RESULT bus returns arithmetic results
to the specified destination. If the destination is Data
Memory, routing is through MDR.

Operations involving additions to the RF are very
straightforward. The Data Memory contents go to the
ALU via the OPERAND bus, while the value in the RF
leaves via the DATA bus in the same 100 ns cycle. The
result is strobed back into RF via the RESULT bus. Thus,
an address calculation, a load, an add and a store are
executed in 200 ns or at 5 MOPS. If the operation does
not require the address calculation cycle, as in LITERAL
+ (RF) = (RF), the operation is performed in 100 ns or
at 10 MOPS.

CHART 1 — Instruction Word Format

F XR U RF M DM
FUNCTION |[EXTENDED |[UTILITY | REG.FILE MODE DATA MEMORY
REGISTER
1 1 | I 11 | - | J I O N N T O A O A
31 28 27 24 23 21 20 16 15 1312 0

Where: F-Field is Operation Function

XR-Field is Extended Register

U-Field — Utility or Extension of F-Field
RF — Register File Address

M-Field - Data Memory Selection Mode
DM-Field — Data Memory Address

the input to the OPERAND bus. By also loading LREG#2
with the same field of the instruction word, the-address
for indirection is taken and immediately cycles the
meaningful contents of Data Memory out to the
OPERAND bus. If indirect indexing is to be performed,
the OPERAND bus value (i.e., the result of the first DM
access) is routed into the INDEX PROCESSOR along
with the index value which was stored in RF, and
summed. The sum is returned to the MAR (Memory
Address Register) for actual operand selection in the
following cycle. In the meantime, during the same index
calculation cycle, the index value on the DATA bus is
fed to the ALU via the DATA bus latch. The value is
incremented (or decremented) here and returned to the
RF via the RESULT bus on the same clock that dropped
the calculated Data Memory address into MAR. Thus, any
type of Data Memory ‘“moding”, i.., indirection,
indexing, etc., takes 100 nanoseconds.

This time becomes the basic micro cycle, encompassing
a memory selection taking approximately 35 ns and an
ADD cycle taking approximately 55 ns. The remaining
10 ns is used for strobing. Note that the only latching that
takes place during this memory access-compute cycle is
in the D latch of the 10800 which latches the old output
of the RF while the new result is being written into RF
In other words, no explicit clocked distinction is made
between the memory selection part and the algebraic part
of the cycle. The address drives memory whose output
drives the bus which drives the ALU. This procedure is
also used both in arithmetic instructions performed
in the 10800 and multiplies performed in a separate

13

Note: M concatenated with DM is used for LITERAL operands.

Another example of 3-bus usage is adding the contents
of two locations of Data Memory and returning the result
to Data Memory. The key to this procedure, which takes
300 ns, is in routing the first operand from the
OPERAND bus to be buffered in the MDR. Thus, the first
operand is sitting in MDR and being gated out onto the
DATA bus via the 10803s data matrix in a pipeline mode.
At the same time, the second operand is going out on the
OPERAND bus to the ALU. This second cycle ends by
latching the result back into MDR via the pipeline feature
of that register. The pipelined contents of MDR which
are being outputted automatically to the DATA bus can
be written into Data Memroy. While these steps are going
on, the three Data Memory addresses are being controlled
respectively by the three SIRs (Super Index Registers)
which are available in the 10803. While each of these
three data memory selections are in process, each of the
three SIRs are being incremented given the system an
ARRAY arithmetic capability.

INSTRUCTION SET

The instruction set was defined to enhance signal
analytic computation and software control. The format
of the instruction word is illustrated in Chart I. The op
code is made up of the F and U field, where F serves as a
class or type of instruction and U expands on it to afford
up to 8 variations on the possible 16 Fs. In fact, only 11
values of F are used.

XR specifies the extended register address if it enters
into the instruction. RF is the register file address, M
defines the 8 possible address calculation modes and DM

TABLE 1 — Summary Instruction Description

Function Name U-Value Comment
F=0 MOVE 8 No data change on MOVE.
F=1 ARITH/LOGIC 8 U-defines sources and destination variations 27 = 24)
define operation.
F=2 A/L ARRAY 3 Uses SIR’s for 3-address control.
F=3 MULTIPLY 8 All products are between XR and DM or LITERAL.
Can form fractional, integer or double precision product,
and can accumulate sums of products.
F=4 MULT. ARRAY 6 Uses 3-address controi via SIR’s
F=5 SHIFT 4 Single place only. Left shift can be circular via LINK bit.
F=6 COMP/SKIP 6 U defines the 6 possible equality tests.
=7 BIT TEST 8 Can jump on bit test on any bit in any register. Can also
jump and complement.
F=8 BIT SET/RESET 4 Can set or reset any bit in any XR or DM.
F=9 R.F. JUMP TEST 3 Jump based on RF contents, equal to, greater than or
less than ZERO.
F=A JUMP/RETURN 6 Includes two absolute JUMPS and two different JSR’s
both with moves of XR — ACC or ACC — XR. There
are two RTN’s with the same move options.

addresses up to 8192 words by data memory.

The eleven basic instructions are summarized in
Table 1. It should be recognized that each has up to 8
variations based on the assignment of the U field. Where
applicable, all effective data memory references are
eight combinations of direct or indirect and indexed, with
or without increment or decrement. The Register File
is set at 32 words, but can be increased by simply making
the entire instruction word one bit wider. The same
thing can be done with the data memory which is defined
as 13 bits.

Setting the REPEAT bit before many of the regular
instructions, freezes the program counter while the
REPEAT register counts repeated executions of that
instruction. The repeating of an ARRAY instruction
brings into play the SIRs contained in the 10803s and
permits very efficient element-by-element vector
operations to be done with only two lines of code. The
inclusion of an accumulate multiply combined with a
REPEAT makes programming filter calculations or
autocorrelations trivially simple. Thus, 2 xiyi is only
two lines of machine code. Gain calculations, that is,
multiplying an array by a constant is equally efficient.
A double precision result can be formed under MULT
ARRAY and stored in sequential memory locations.

COMPARE instructions can be repeated with a
software-managed internal interrupt occurring on
a “hit”. The REPEAT register can be monitored through
the interrupt subroutine, and the address of the first
value to pass the test can be identified. This is used
typically to verify the dynamic range of a set of signal

14

samples or test them for limiting. It also speeds up
searching operations. Bit testing can be done on any word
in any XR, RF or Data Memory. Repeating a bit test
of the high order bit is a very simple way to determine
when a signal set goes negative. Internal interrupts can be
scheduled for any of the bit tests, compare instructions
or Condition Codes.

The STACK POINTER Register is one of the registers
unlimited subroutine stacking. Two words are pushed on
an interrupt or JSR and two words are popped on a
return: One is the program counter and the other is the
STATUS register. The inclusion of the setting of the
REPEAT flop in the STATUS register eliminates the
problem of interrupting during a REPEAT, and being
able to complete it on return. No attempt was made
for more context switching in hardware. That task is
left to software.

1/0 SUBSYSTEM

The generic 1/O uses three XRs: The first is called the
Direct Data Register and has two parts: an input function
and an output function. The MOVE instruction selects
the function to be used.

The second XR is called the IDR (Indirect ‘Data
Register) and serves as a local control register whose bit
assignments are dependent on the application. This
permits expanding the DDRs using bits in IDR to indicate
which one of several DDRs should be addressed by the
one XR value. Bits in the IDR can also be used to define
other I/O related protocol requirements such as how

long to time out a delay, management of a UART
or USART device, and so on.

The third XR register contains the I/O controls, status
and interrupt mask bits. Thus, handshaking or interface
sensing can be done either by direct software driving
or on an interrupt driven basis.

We have found that the generic technique of three
registers is adaptable to the whole gambit from simple
to’ complex interfaces, with minimum hardware
problems, and very straightforward software.

FUTURE PLANS

Regarding the other members of the 10800 family,
we have not found the 10801 useful because of our macro
implementation. We used eight 16 x 4 bit register file
chips, but expect to replace them with two 10806s which
are 32 by 9 bit two-port devices. The use of two ports
will expedite indexing operations. The availability of the
10802 programmable timer will be important in
reducing components count through LSI. The planned
bidirectional TTL-ECL converters will ease parts count
further. The introduction of 4K ECL, RAM and ROM
or PROM will ease one of two other implementation
problems, namely, memory parts count.

15

REFERENCES

1. W. Blood, ‘“Motorola’s MECL M10800 Family”, Motorola,
Inc., 1975.

2. H. J. Manley, “GTE Sylvania’s PSP: Fast Flexible Signal
Processing”, Signal, pp. 12-14, January -February 1972.

3. A. J. Goldberg, M. J. Ross, and A. Arcese, “A Predictive
Coder for Narrowband Communications Channels in CONF.
REC., INT. CONF. COMMUN.” | Minneapolis, Minnesota, 1974.

4. A. J. Goldberg, H. L. Shaffer, “A Real-Time Adaptive
Predictive Coder Using Small Computers’, IEEE Communications
Systems and Technology Conference, Dallas, Texas,
April 30, 1974.

5. J. deLellis, et al., “A Program Controlled H.F. Modem
Implementation”, EASCON 74, Washington, D.C., October 7-9,
1974, IEEE Publication 74CHO 883-1AES, pp. 349-352.

M10800 Microprogrammed Demonstrator

Prepared by :

Tom Balph, LSI System Engineer
lan LeMair, Field Applications Engineer

Motorola |.C. Division
Mesa, Arizona

ABSTRACT

The growth of the LSI bipolar technology within
the semiconductor industry has created various micro-
computer oriented device families. One of these is
Motorola’s MECL 10800 group of devices which is a
throughput oriented chip set using the MECL 10,000
interface. Based on the MC10800 ALU slice and MC10801
microprogram sequencer, an eight-bit arithmetic processor
tied to an M6800 EXORciser system has been designed to
exhibit the processing power, microprogram features, and
system versatility of bipolar chip sets.

The MECL Microprogrammed On-line Demonstrator
(MOD) is a bipolar, microprogrammed unit treated as
a peripheral to the M6800 system for data transfer and
control. The working system takes advantage of the
existing M6800 hardware configuration and software to
give the system user easy interface with the MECL
processor. Talking through a T.I. 733 terminal, a user can
write microcode, store and load microprograms, and run
the processor. Features of the MOD include:
8-bit data word
17 scratch pad registers
Fully microprogrammed control
1K by 32-bit writable control storage
10 megahertz clock rate
Wirewrapped hardware
“MODBUG” M6800 operating software

NN AW

SYSTEM ARCHITECTURE

The block diagram of Figure 1 shows the functional
parts and architecture of the system. The MECL MOD
unit is assigned peripheral locations on th main M6800
EXORciser bus, and is under control of the M6800 MOS
processor. Although the 10800 unit runs independently
when activated, the EXORciser acts as master controller
to enter and exit data, reset and activate the processor,
and load or modify microprogram storage. A T.I. 733
terminal also tied to the system provides keyboard inter-
face, hard copy, and tape cassette storage.

The MOD processor consists of interface, master
control, data processing, and microprogram control
(including writable control storage) sections intercon-
nected by two main data paths. Data received from the
EXOREciser bus is transferred to the processor sections via
the Incoming Data Bus, and data exits via the Outgoing
Data Bus.

INTERFACE

The interface block provides the data buffering and
“handshaking” necessary for connecting to the 6800 bus.
Based on the 6820 MOS Peripheral Interface Adapter
(PIA) LSI device, the MOD interface occupies several
addresses on the 6800 memory map. Contained within

16

these addresses are registers for control of the PIA, the
master control register address, read and write addresses
for data processor, and addresses for microprogram
control. The interface logic decodes these locations
and sets up timing and data buffering used for information
exchange within the system.

The two MOD eight-bit data busses are tied to the
interface section. All data exchange moves through these
busses to and from the ECL logic.

MASTER CONTROL

The master control register along with its decode
and timing logic oversees operation of the processor.
The register contains a seven-bit code which determines
the operating mode of the ECL unit. Its functions include:
Reset the processor.

Activate the processor.
Load WCS word address.
Load WCS page address.
Load WCS data.

6. Read WCS data.

The master control register occupies a separate 6800
peripheral address and is written to only. On receiving
a given code, one of the above functions or a combination
of functions is decoded and implemented. In this manner,
the user can load and read WCS, and can reset or activate
the processor. When the processor is activated, the master
register relinquishes control to the stored microprogram.
However, control is returned to the master register
anytime a non-activate code is stored.

The decode logic generates the proper control timing
signals for the selected function. Timing synchronization
is necessary because the EXORciser runs from a 1 MHz,
2 phase clock and the MOD processor uses a free-running
10 MHz single phase clock. Timing signals from the
interface circuitry along with the control code in the
register are synchronized to the 10 MHz master oscillator,
and, in turn, controls timing in the rest of the processor.

[SR SO NS

DATA PROCESSING

The ALU, working registers, and condition code
register are contained in the data processing section
(Figure 2). The eight-bit ALU uses two MC10800 four-bit
ALU slices (Figure 3) which also contains the accumulator.
The register file contains sixteen (16) locations and uses
MCM10145 ECL RAMs.

The data processing section bus structure is designed
to take advantage of the 10800 features and minimize
package count. Data entering via the Incoming Data
Bus must be transferred through the ALU for loading into
any register. The accumulator, register file, and condition
code register are all loaded directly from the Outgoing
Data Bus. The register file and C.C. register in turn drive
the File Bus to ALU.

The data ports of the 10800 are connected to the
busses as shown in Figure 2. The File Bus is connected to
the @ port of the 10800 taking advantage of the @ bus
latch. The latch allows the RAM based register file to
function as a master-slave design which makes R.F.
read/write possible in one clock cycle. The Incoming

g8

8

‘]
/(5

s -
L ADDRESS 8

INTERFACE TIMING |i PROGRAM STORAGE CONTROL
M6800 PROCESSOR : ;
W/DEBUG MODULE
+ RAM
— |—® TOSTATUS DECODE
MASTER CONTROL
REGISTER SYSTEM CcLOCK
TO ALL REGISTERS
TRANSLATOR
INCOMING DATA BUS , 8
7
BUFFER
@ INCOMING DATA BUS , 8
o " 7
7 = a’ 8 FILE BUS
21218 s lL-PROGRAM
cl|lq|E CONTROL 1
o le]z
ol«}o
<jo o ALU B LIle[vIc
(10800 SLICES) “Ts CR3 NA FIELD
¢= ACC gggglgé%TsTER sTAc e 4
INTERFACE CR2 8
’ P
- ‘
10800°s
<} o CR1 I FIELD WRITABLE
< A UL-PROGRAM
a STORAGE
REGISTER .CRO PAR (1K x 32)
FILE .

I PAGE ADDRESS

WORD 2 " (a)

y

<——<]<J £

OUTGOING DATA BUS

EXORciser BUS

MOD PROCESSOR

T.1. 733
TERMINAL

EXORciser SYSTEM

STATUS
DECODE

STATUS FIELD *5

CC FIELD “

]

A

-
3

1o

TO CC REGISTER ~a—

ALUFIELD|
ALU - 6
TO ALY a8 DECODE
RF FIELD

TO RF & ACC -=— -

CONTROL LOOKAHEAD REGISTER (PIPELINE)

FIGURE 1 — System Architecture

DATA PROCESSING SECTION

INCOMING DATA BUS’ FILE BUS

!
‘APORT }

L l Nl z] vl c
REGISTER
FILE CONDITION
ALU (10145) CODE REGISTER

(10800°s)
4

ACC bl

| | PORT

OQUTGOING DATA BUS

FIGURE 2 — Data Processing Section

Data Bus is connected to the A port of the 10800, and the
ALU/shifter results appear at the I port which drives the
Outgoing Data Bus. '

The ALU function set uses the accumulator, register
file (File Bus), and Incoming Data Bus as operand sources.

17

The functions include transfer, logic, shift, and arith-
metic operations. Special Add/Subtract-shift and BCD
arithmetic functions are useful for “‘number crunching”
operations and display special features of the 10800.

The R.F., accumulator, and C.C. register are controlled
independently of the ALU. The R.F. and accumulator
have a separate control field and can be written on
independently. The C.C. register also has its own control
field.

The condition code register contains five bits which
are:

1. C — carry out from the most signficant bit of the

ALU.
V — two’s complement arithmetic overflow.
Z — zero detect of the result.
N — sign of the result.
. L — link bit for shift.

The register can be loaded from the Outgoing Data
Bus or from the ALU. The individual bits can be loaded
from the ALU as needed for logic, arithmetic, and shift
operations.

W kW

4-BIT SLICE BLOCK DIAGRAM—-MC10800

-4~ A BUS
-4 0 8Us
v 4 4
1
AS16 LATCH bux |
(Lc) f=
AS2
MASK -
AS3 ouTPUT ASS
BUS
v v { CONT AS6
ASO
PG AS1
GG = AS4
ARITHMETIC AS10
CouT =—— LOGIC e
UNIT 11
EAR — As12
OF ‘—T— CiN
‘ ACCUMULATOR CLK
R4 =— ‘ AS9
Mux AS15
2D ~-— SHIFT
PAR =— NETWORK 4 4 4 A1
RES 1
AS13 —‘f r
AS14 INPUT
8US AS8
AS? ———] CONT
| BUS

FIGURE 3 — 10800 Block Diagram

MICROPROGRAM CONTROL AND
WRITABLE CONTROL STORAGE

The microprogram control uses two MC10801s
(Figure 4) for sequencing of operations. The two devices
are connected to generate an eight-bit word address and
a two-bit page address for the microprogram storage.
The storage size is four (4) pages of two hundred fifty-six
(256) words/page or one thousand twenty-four (1024)
total words. The page address is expandable to four bits
for up to sixteen (16) pages (4K total words).

RST
RESET*

EXTENDER NEXT ADDRESS INSTRUCTION CONTROL
Din BUS NAOINA3 1C0-1C3
X8
cso ' [f#— B-BRANCH
cst STATUS
CONTROL NEXT ADDRESS LOGIC "
cs2 LoGIC le— SamcH
cs3 ENABLE
STATUS
CONTROL
c
LIFO in
S5 REPEAT
REGISTER INCREMENTER
(CRa-CRT) (cR1) Cout
Clk+
STATUS
REGISTER ¢
(CR3)
CONTROL
— ‘ MEMORY
ADDRESS
REGISTER
“Clk AND RST oS (CRO)
TO ALL REGISTERS INSTRUCTION
CONTROL REGISTER
LoGIC (CR2)
BUFFER css
CMA ENABLE
CR30-CR33 180-183 CS6CS7CS8 @BO @83 CR00-CRO3
STATUS OUTPUTS | BUS BUS SELECT © BUS CONTROL MEMORY
A

FIGURE 4 — 10801 Block Diagram

18

The 10801s use sixteen (16) microfunctions to
generate the word address. A four-bit Instruction Field
(I Field) feedback from the WCS determines the function.
Address generation including increment, direct jump,
conditional jump, and subroutining is done within an
eight-bit, two hundred fifty-six (256) word page. Jump
addresses and constant are fed to the 10801 from WCS
by the Next Address Field (NA Field). Other address
information can be loaded into the 10801s from the
Incoming and Outgoing Data Busses.

The page address is changed on a jump basis only.
The page address can be reset, loaded from the Incoming
Data Bus, or loaded from the NA Field.

The writable control storage is thirty-two bits wide.
The information stored in each memory location forms
a microinstruction which controls a processor operation.
Information stored in the WCS is written from the
Incoming Data Bus one eight-bit byte at a time. Four 4)
individual writes from the 6800 system are necessary for
each microword. The WCS information can also be read
or verified via the Outgoing Data Bus one (1) byte at a
time.

The thirty-two-bit control word is divided into six
(6) fields:

1. ALU Field — Six bits control 61 functions.

2. Condition Code Field — Three bits control eight
functions.

3. Register File Field — Six bits that contain the R.F.
address, R.F. write enable, and accumulator write enable.

4. Status Field — Five bits containing 31 operations
that generate branch conditions for the 10801, control
the status register CR3, and control page addressing.

5. Instruction Field — Four bits for address
functions.

6. Next Address Field — Eight bits used for jump
addresses and constants.

As previously discussed, the I Field and NA Field
feed back directly to the 10801s from WCS and control
address generation and sequencing. The other four 4)
fields are “‘pipelined” (also called “control lockahead”).
The pipelined fields are buffered by a register and these
operations occur one clock cycle later than the I Field and
NA Field control operation. This feature allows a higher
system clock speed because the WCS access time is not
added to the processor execution time in the same clock
period.

A feature used to save on the number of control bits
and increase system speed is the position of the ALU
decode. The six-bit ALU Field must be decoded to a
larger number of select lines. To shorten the clock cycle
time, the ALU decode is done previous to the pipeline
register. Therefore, the decode time is not added to the
ALU execution time and this time is available during the
WCS access cycle. The status decode is not similarly
designed because it does not add directly to the processor
cycle time, and part of this logic must be at the output
of the pipeline register.

PROGRAMMING MODEL AND
MICROINSTRUCTION SET

The microinstruction set makes a large number of
registers available to the user. The accumulator and
register file are controlled from the RF Field, the condi-

PROGRAMMING MODEL

7 0]

[AcC i ACCUMULATOR
RFO
RF1
e | —_—
I
. REGISTER FILE
!
'
— —
!
|
RFE
RFF

l— CONDITION CODE

CARRY BORROW

OVERFLOW (2's COMP)

ZERO SIGN (NEGATIVE)

SHIFT LINK

[CR2

[CR1

r]

4

3

|

OP CODE/CONSTANT

CYCLE COUNTER/CONSTANT

CONTROL MEMORY WORD ADDRESS

PAGE ADDRESS

CR3 CONTROL STATUS

FIGURE 5 — Programming Model

tion code register is controlled from the C.C. Field, and
the remaining registers (Figure 5) are manipulated by the
status, instruction, and NA Fields. The microinstruction
set is listed in Figure 6.

PERFORMANCE EXAMPLE

Several types of problems have been programmed on
the MOD. A good example of this is a full floating point
single precision multiply program. The format for
numbers is as follows:

(8-bit sign and exponent)
times
(24-bit mantissa)

Each number occupies four (4) eight-bit bytes. The

program produces:

(1)

(multiplicand) x (multiplier)
equals
product

(2)

Worst case multiply time is 37.6 microseconds.

19

HARDWARE

The 10800 MOD processor consists of three (3) wire-
wrap boards that plug into the EXORciser chassis. Total
device count consists of about 80 MSI/SSI devices (TTL,
ECL, and Linear Interface), four (4) 10800 ECL/LSI
devices, a 6820 MOS PIA, and thirty-two (32) ECL 1K
RAMS (10146). Power supplies consist of +5.0 volts
and +3.0 volts. Clock frequency is 10 MHz.

SOFTWARE

“MODBUG” support software is written in M6800
assembler language and consists of:

1. System initialization and writable control store
monitor. This allows active interface of writing and
reading of control storage.

2. A punch or memory dump capability to store the
control memory contents on magnetic tape.

3. A memory load capability from magnetic tapes.

4. An Activate/Interface monitor to control and to
load and receive data from the processor when running.

SUMMARY OF PURPOSE AND CAPABILITY

The main goal of the 10800 MOD processor is to
provide a demonstration vehicle for microprogramming,
ECL LSI, and the total software and hardware interface
of a working system. The arithmetic capability is designed
to be a “number cruncher” performing multiply, divide,
floating point, and higher level functions with full BCD
featured.

TRANSFER GROUP

LOGIC GROUP

SHIFT GROUP

ALU FIELD LISTING

AL
Ie MNEM DESCRIPTION HEX .
CODE QUTPUT cone® | mmem DESCRIPTION ALU QUTPUT
00 I8 TRANSFER INCOMING DATA BUS 18
01 TAC TRANSFER ACCUMULATOR Acc 2 0 | Dadl -ADD RF PLUS 18 RF + 18
0 2 TRF TRANSFER REGISTER FILE RF 2 1 | DADA ADD RF PLUS ACC RF + ACC
0 3 1AC INVERT ACCUMULATOR T 2 2 | oAcI ADD RF PLUS IB PLUS RF + IB +
0 4 IRF INVERT REGISTER FILE F S | 23 | oaca ADD RF PLUS ACC PLUS RF + ACC + [C]
0 s _) ; & | 2 a4 | orSI IB MINUS RF IB - RF
0 6 : 3 i 2 | 25 | DRsA ACC MINUS RF ACC - RF
07 DECF DECREMENT REGISTER FILE RF-1 £ | 26 | Dra 18 MINUS RF PLUS 18 - RF +
E |27 | orea ACC MINUS RF PLUS ACC - RF +
= | 28 | pssI RF MINUS 1B RF - IB
E] 29 DSBA RF MINUS ACC RF - ACC
8 | 2 a | oscr RF MINUS I8 PLUS RF - 1B +
2 B | DSCA RF MINUS ACC PLUS [C RF - ACC +
2 ¢ | DCPF 10'S COMPLEMENT RF COMP. RF
— - = 2 D P 'S COMPLEMENT ACC .
T e PrT— A DCPA 10'S COMPLE COMP. ACC
2 £ | ocer 9'S COMPLEMENT RF PLUS COMP. RF +
08 ANDI 1 BUS AND REGISTER FILE I8 N RF 2 F | pecea 9'S COMPLEMENT ACC PLUS COMP. ACC +
09 ANDA ACC AND REGISTER FILE ACC N RF
0 A ZERO ALL ZERO 0's
0B ONES ALL ONES 1S
0 ¢ EX01 I BUS EXCLUSIVE-OR REGISTER FILE | 1B 8 RF
0 D EX0A ACC EXCLUSIVE-OR REGISTER FILE ACC @ RF
0 E 10RI I BUS INCLUSIVE-OR REGISTER FILE | IB U RF
0 F 10RA ACC INCLUSIVE-OR REGISTER FILE ACC U RF HEX36 | MNEM DESCRIPTION ALU OUTPUT W
R S CODE
30 BADI | ADD RF PLUS IB RF + IB
31 BADA | ADD RF PLUS ACC RF + ACC
32 BACI | ADD RF PLUS IB PLUS RF + IB +
33 BACA | ADD RF PLUS ACC PLUS RF + ACC +
a
cgsém NN DESCRIPTION s | BRSI 1B MINUS RF 1B - RF
g2
1 0 | ASRF ARITHMETIC SHIFT RIGHT R.F. N R BRSA | ACC MINUS RF ACC - RF
10 ASRA ARITHMETIC SHIFT RIGHT ACC & 36 BRCI IB MINUS RF PLUS [C] IB - RF +
. RF z
1 2 | SASR ARITH. SHIFT RIGHT (ACC MINUS RF) 0y BRCA | ACC MINUS RF PLUS ACC - RF +
13 | AASR ARITH. SHIFT RIGHT (ACC PLUS RF) =
1 4 | LSRF LOGIC SHIFT RIGHT RF z 38 BSBI | RF MINUS IB RF - I8
15 | LSRA LOGIC SHIFT RIGHT ACC Z | BSBA | RF MINUS ACC RF - ACC
1 6 | RORF ROTATE RIGHT RF
3A BSCI RF MINUS 1B PLUS [C RF - I8 + [T
17 | Rora ROTATE RIGHT ACC
18 | ASLF ARITHMETIC SHIFT LEFT RF 38 BSCA | RF MINUS ACC PLUS
19 | ASLA ARITHMETIC SHIFT LEFT ACC 3c NEGF | NEGATE RF (2'S COMP.) RF +1
1 A | ROLF TATE LEFT RF -
oL ROTATE LE ! | 3D NEGA | NEGATE ACC (2'S COMP.) ACC + 1
18 ROLA ROTATE LEFT ACC «{E :
1 c | ADsL SHIFT LEFT (ACC PLUS RF) ACCRF |- | 3E BCCF | 1'S COMP. RF PLUS RF+
10 SusL SHIFT LEFT (ACC MINUS RF)] pecre - 1 3F BCCA 1'S COMP. ACC PLUS ACC +
1 E ACSR SHIFT RIGHT W/CARRY (ACC PLUS RF)| C
1 F - -
REGISTER FILE FIELD LISTING
CONDITION CODE FIELD LISTING
RF ADDRESS RF WRITE ENABLE
HEX, 6 HNEM DESCRIPTION C.C. REG. REGISTER DESCRIPTION
CODE LNZVEC 0 RFO 0 NO CHANGE
o RTL RESET LINK (0 1) R - - . . ; RFY 1 WRITE @ BUS INTO RF
1 LDA LOAD ALL BITS FROM ALU trtd 5 RE3
2 L0B LOAD OUTPUT DATA BUS trr ot g Egg ACC WRITE ENABLE
3 IHB INHIBIT ALL el 6 RF6
4 STL SET LINK (1 -L) s g :EZ; DESCRIPTION l
5 LAR LOAD ARITHMETIC (Z,N,C,Y) R AR R 9 RF9 0 NO CHANGE
6 LOG LOAD LOGIC (Z,N) 1t A EES 1 WRITE § BUS INTO ACC
B
7 ENB ENABLE TO FILE BUS .- c RFC
= NO CHANGE D RFD
. E PFE
t = LoAD DATA F RFF
R = RESET
S = SET

FIGURE 6 — Microinstruction Set

20

STATUS FIELD LISTING

HEX 6 NMEM DESCRIPTION |
CODE
00 TSLS TEST OUTGOING DATA BUS LSB
01 TSTN TEST SIGN BIT E
02 TST2 TEST ZERO DETECT [Z]
03 TSTV TEST OVERFLOW [E
04 TSTC TEST CARRY BIT [C]
05 TSTL TEST LINK BIT
06 TSMS TEST OUTGOING DATA BUS MSB
07 TONE TEST CONDITION = 1
08 TSLL TEST OUTGOING DATA BUS LSB & I'Zl
09 TSNZ TEST SIGN [N]& ZERO DETECT
0A TRR1 TRANSFER CR1 TO INCOMING DATA BUS
08 TRR2 TRANSFER CR2 TO INCOMING DATA BUS
0oc RTSR RESET STATUS REGISTER CR3
U3 LNAS LOAD N.A. FIELD INTO CR3
OF - -
10 LDBO LOAD DIN INTO CRB0
n LDB1 LOAD DIN INTO CR3]
12 LDB2 LOAD DIN INTO CR32
13 LDB3 LOAD DIN INTO CR33
14 TSBO TEST CR3O
15 TSB1 TEST CR31
16 TSB2 TEST CR32
17 TSB3 TEST CR33
18 STBO SET CR30
19 STB1 SET CRB]
1A STB2 SET CR32
1B STB3 SET CR.’S3
1C RTUA RESET PAGE (UPPER) ADDRESS
10 LIBU LOAD I. BUS INTO PAGE ADDRESS
1E LNAU LOAD N.A. INTO PAGE ADDRESS
1F INHS INHIBIT STATUS (NOP)
1 FIELD LISTING
TABLE | REGISTER AND FLIP-FLOP QUTPUTS Vg = VOH
CODE BRANCH OR REPEAT LIFO STACK
MNEM | 1C3 1C2 IC1_ICO DESCRIPTION CONDITION? CRO CR1_|CR2 CR4-CR7 Rsa3
INC | 1 _1_0_ 0] INCREMENT X CRO plus 1 - - - -
JMP | 0 0 1 0| JUMPTONEXTADDRESS X NA - - E -
JIB 1 0 0 0]JUMPTOIBUS X IB-NA - - - -
JIN 1 0 0 1| JUMPTOIBUS& LOAD CR2 X IB-NA - 1B - -
JPI 1 0 1 0| JUMPTOPRIMARY INST. X CR2-NA - - - -
JEP 1 1 1 0| JUMPTOEXTERNAL PORT X 0B-NA - - - -
JL2 0 0 0 1| JUMP&LOAD CR2 X NA - 1B - -
JLA | 0 0 1 1[JUMP&LOADADDRESS X NA CROplus 1] — = -
RSQ=1and CR1+FF NA - — [“PUSH" CRO TO STACK -
SR 10 0 0 0/ JUMPTOSUBROUTINE RSQ=0 or CR1 = FF NA - — [“pusH To CRO+1 TO STACK| -
RSQ=1and CR1+FF CR4 CR1plus1| — ["POP"STACK TO CRO -
RTN | 11 1 T | RETURN FROMSUBROUTINE "Rs0-0 or CRI=FF CRa — | = ["POP"STACK TO CRO 0
RSR | 1 1 0 1| REPEATSUBROUTINE X CRO plus 1 NA | — - 1
RSQ=1and CR1~FF - CR1plus1| — - -
RPI 1 0 1 1| REPEATINSTRUCTION RS0Z0 or CRIZFF CRI-NA - - -
1 NA - - - —
BRC | 0 1 0 1| BRANCHONCONDITION o ER0 plus ~ - — —
BSR | 0 1 0 0| BRANCHTOSUBROUTINE ! NA - — | "PUSH" CRO+1 T0 STACK —
0 CRO plus 1 - = - -
ROC | 0 1 1 1| RETURNONCONDITION [1] CNT —— POP STACK_TO CRO E
UPPER NA - - - -
CROg=NA0-B0] — - - -
BRM | 0 1 1 0| BRANCH&MODIFY CRO{=NAT-B1
LOWER CR02=NA2
CR03=NA3

NOTES: 1. X=DONT CARE
—=NO CHANGE
2. BRANCH CONDITION SELECTED BY STATUS FIELD.
3. RSQ =STATE OF REPEAT FLIP-FLOP.

FIGURE 6 — Microinstruction Set (continued)

21

@ MOTOROLA Semiconductor Products Inc.

Printed in Switzerland 187-177/5.0

	05722123.tif
	05722124.tif
	05722125.tif
	05722126.tif
	05722127.tif
	05722128.tif
	05722129.tif
	05722130.tif
	05722131.tif
	05722132.tif
	05722133.tif
	05722134.tif
	05722135.tif
	05722136.tif
	05722137.tif
	05722138.tif
	05722139.tif
	05722140.tif
	05722141.tif
	05722142.tif
	05722143.tif
	05722144.tif
	05722145.tif
	05722146.tif
	05722147.tif
	05722148.tif
	05722149.tif
	05722150.tif
	05722151.tif
	05722152.tif
	05722153.tif
	05722154.tif
	05722155.tif
	05722156.tif
	05722157.tif
	05722158.tif
	05722159.tif
	05722160.tif
	05722161.tif
	05722162.tif
	05722163.tif
	05722164.tif
	05722165.tif
	05722167.tif
	05722168.tif
	05722168a.tif
	05722169.tif
	05722170.tif
	05722171.tif
	05722172.tif
	05722173.tif
	05722174.tif
	05722175.tif
	05722176.tif
	05722177.tif
	05722178.tif
	05722179.tif
	05722180.tif
	05722181.tif
	05722182.tif
	05722183.tif
	05722184.tif
	05722185.tif
	05722186.tif
	05722187.tif
	05722188.tif
	05722189.tif
	05722190.tif
	05722191.tif
	05722192.tif
	05722193.tif
	05722194.tif
	05722195.tif
	05722196.tif
	05722197.tif
	05722198.tif
	05722199.tif
	05722201.tif
	05722202.tif
	05722202a.tif
	05722203.tif
	05722204.tif
	05722205.tif
	05722206.tif
	05722207.tif
	05722208.tif
	05722209.tif
	05722210.tif
	05722211.tif
	05722212.tif
	05722213.tif
	05722214.tif
	05722215.tif
	05722216.tif
	05722217.tif
	05722218.tif
	05722219.tif
	05722220.tif
	05722221.tif
	05722223.tif
	05722224.tif
	05722224a.tif
	05722225.tif
	05722226.tif
	05722227.tif
	05722228.tif
	05722229.tif
	05722230.tif
	05722231.tif
	05722232.tif
	05722233.tif
	05722234.tif
	05722235.tif
	05722236.tif
	05722237.tif
	05722238.tif
	05722239.tif
	05722240.tif
	05722241.tif
	05722242.tif
	05722243.tif
	05722244.tif
	05722245.tif
	05722246.tif
	05722247.tif
	05722249.tif
	05722250.tif
	05722250a.tif
	05722251.tif
	05722252.tif
	05722253.tif
	05722254.tif
	05722255.tif
	05722256.tif
	05722257.tif
	05722258.tif
	05722259.tif
	05722260.tif
	05722261.tif
	05722262.tif
	05722263.tif
	05722264.tif
	05722265.tif
	05722267.tif
	05722268.tif
	05722268a.tif
	05722269.tif
	05722270.tif
	05722271.tif
	05722272.tif
	05722273.tif
	05722274.tif
	05722275.tif
	05722276.tif
	05722277.tif
	05722278.tif
	05722279.tif
	05722280.tif
	05722281.tif
	05722282.tif
	05722283.tif
	05722284.tif
	05722285.tif
	05722286.tif
	05722287.tif
	05722288.tif
	05722289.tif
	05722290.tif
	05722291.tif
	05722292.tif
	05722293.tif
	05722294.tif
	05722295.tif
	05722296.tif
	05722297.tif
	05722298.tif
	05722299.tif
	05722300.tif
	05722301.tif
	05722302.tif
	05722303.tif
	05722304.tif
	05722305.tif
	05722306.tif
	05722307.tif
	05722308.tif
	05722309.tif
	05722310.tif
	05722311.tif
	05722312.tif
	05722313.tif
	05722314.tif
	05722315.tif
	05722316.tif
	05722317.tif
	05722318.tif
	05722319.tif
	05722320.tif
	05722321.tif
	05722322.tif
	05722323.tif
	05722324.tif
	05722325.tif
	05722326.tif
	05722327.tif
	05722328.tif
	05722329.tif
	05722330.tif
	05722331.tif
	05722332.tif
	05722333.tif
	05722334.tif
	05722335.tif
	05722336.tif
	05722337.tif
	05722338.tif
	05722339.tif
	05722341.tif
	05722342.tif
	05722342a.tif
	05722343.tif
	05722344.tif
	05722345.tif
	05722346.tif
	05722347.tif
	05722348.tif
	05722349.tif
	05722350.tif
	05722351.tif
	05722352.tif
	05722353.tif
	05722354.tif
	05722355.tif
	05722356.tif
	05722357.tif
	05722358.tif
	05722359.tif
	05722360.tif
	05722361.tif
	05722362.tif
	05722363.tif
	05722364.tif
	05722365.tif
	05722366.tif
	05722367.tif
	05722368.tif
	05722369.tif
	05722370.tif
	05722371.tif
	05722372.tif
	05722373.tif
	05722374.tif
	05722375.tif
	05722376.tif
	05722377.tif
	05722378.tif
	05722379.tif
	05722380.tif
	05722381.tif
	05722382.tif
	05722383.tif
	05722384.tif
	05722385.tif
	05722386.tif
	05722387.tif
	05722388.tif
	05722389.tif
	05722390.tif
	05722391.tif
	05722392.tif
	05722393.tif
	05722395.tif
	05722396.tif
	05722396a.tif
	05722397.tif
	05722398.tif
	05722399.tif
	05722400.tif
	05722401.tif
	05722402.tif
	05722403.tif
	05722404.tif
	05722405.tif
	05722406.tif
	05722407.tif
	05722408.tif
	05722409.tif
	05722410.tif
	05722411.tif
	05722412.tif
	05722413.tif
	05722414.tif
	05722415.tif
	05722416.tif
	05722417.tif
	05722418.tif
	05722419.tif
	05722420.tif
	05722421.tif
	05722422.tif
	05722423.tif
	05722424.tif
	05722425.tif
	05722426.tif
	05722427.tif
	05722429.tif
	05722430.tif
	05722430a.tif
	05722431.tif
	05722432.tif
	05722433.tif
	05722434.tif
	05722435.tif
	05722436.tif
	05722437.tif
	05722438.tif
	05722439.tif
	05722440.tif
	05722441.tif
	05722442.tif
	05722443.tif
	05722444.tif
	05722445.tif
	05722446.tif
	05722447.tif
	05722448.tif
	05722449.tif
	05722450.tif
	05722451.tif
	05722452.tif
	05722453.tif
	05722454.tif
	05722455.tif
	05722456.tif
	05722457.tif
	05722458.tif
	05722459.tif
	05722460.tif
	05722461.tif
	05722462.tif
	05722463.tif
	05722464.tif
	05722465.tif
	05722467.tif
	05722468.tif
	05722468a.tif
	05722469.tif
	05722470.tif
	05722471.tif
	05722472.tif
	05722473.tif
	05722474.tif
	05722475.tif
	05722476.tif
	05722477.tif
	05722478.tif
	05722479.tif
	05722481.tif
	05722482.tif
	05722482a.tif
	05722483.tif
	05722484.tif
	05722485.tif
	05722486.tif
	05722487.tif
	05722488.tif
	05722489.tif
	05722490.tif
	05722491.tif
	05722492.tif
	05722493.tif
	05722494.tif
	05722495.tif
	05722496.tif
	05722497.tif
	05722498.tif
	05722499.tif
	05722500.tif
	05722501.tif
	05722502.tif
	05722503.tif
	05722504.tif
	05722505.tif
	05722506.tif
	05722507.tif
	05722508.tif
	05722509.tif
	05722510.tif
	05722511.tif
	05722512.tif
	05722513.tif
	05722514.tif
	05722515.tif
	05722516.tif
	05722517.tif
	05722518.tif
	05722519.tif
	05722520.tif
	05722521.tif
	05722522.tif
	05722523.tif
	05722524.tif
	05722525.tif
	05722526.tif
	05722527.tif
	05722528.tif
	05722529.tif
	05722530.tif
	05722531.tif
	05722532.tif
	05722533.tif
	05722534.tif
	05722535.tif
	05722536.tif
	05722537.tif
	05722538.tif
	05722539.tif
	05722540.tif
	05722541.tif
	05722542.tif
	05722543.tif
	05722544.tif
	05722545.tif
	05722546.tif
	05722547.tif
	05722548.tif
	05722549.tif
	05722550.tif
	05722551.tif
	05722552.tif
	05722553.tif
	05722554.tif
	05722555.tif
	05722556.tif
	05722557.tif
	05722559.tif
	05722560.tif
	05722560a.tif
	05722561.tif
	05722562.tif
	05722563.tif
	05722564.tif
	05722565.tif
	05722566.tif
	05722567.tif
	05722568.tif
	05722569.tif
	05722570.tif
	05722571.tif
	05722572.tif
	05722573.tif
	05722574.tif
	05722575.tif
	05722577.tif
	05722578.tif
	05722578a.tif
	05722579.tif
	05722580.tif
	05722581.tif
	05722582.tif
	05722583.tif
	05722584.tif
	05722585.tif
	05722586.tif
	05722587.tif
	05722588.tif
	05722589.tif
	05722590.tif
	05722591.tif
	05722592.tif
	05722593.tif
	05722594.tif
	05722595.tif
	05722596.tif
	05722597.tif
	05722598.tif
	05722599.tif
	05722600.tif
	05722601.tif
	05722602.tif
	05722603.tif
	05722604.tif
	05722605.tif
	05722606.tif
	05722607.tif
	05722608.tif
	05722609.tif
	05722610.tif
	05722611.tif
	05722612.tif
	05722613.tif
	05722614.tif
	05722615.tif
	05722616.tif
	05722617.tif
	05722618.tif
	05722619.tif
	05722620.tif
	05722621.tif
	05722622.tif
	05722623.tif
	05722624.tif
	05722625.tif
	05722626.tif
	05722627.tif
	05722628.tif
	05722629.tif
	05722630.tif
	05722631.tif
	05722632.tif
	05722633.tif
	05722634.tif
	05722635.tif
	05722636.tif
	05722637.tif
	05722638.tif
	05722639.tif
	05722640.tif
	05722641.tif
	05722643.tif
	05722644.tif
	05722644a.tif
	05722645.tif
	05722646.tif
	05722647.tif
	05722648.tif
	05722649.tif
	05722650.tif
	05722652.tif
	05722653.tif
	05722654.tif
	05722654a.tif
	05722655.tif
	05722656.tif
	05722657.tif
	05722658.tif
	05722659.tif
	05722660.tif
	05722661.tif
	05722662.tif
	05722663.tif
	05722664.tif
	05722665.tif
	05722666.tif
	05722667.tif
	05722668.tif
	05722669.tif
	05722671.tif
	05722672.tif
	05722672a.tif
	05722673.tif
	05722674.tif
	05722675.tif
	05722676.tif
	05722677.tif
	05722678.tif
	05722679.tif
	05722680.tif
	05722681.tif
	05722682.tif
	05722683.tif
	05722684.tif
	05722685.tif
	05722686.tif
	05722687.tif
	05722688.tif
	05722689.tif
	05722690.tif
	05722691.tif
	05722692.tif
	05722693.tif
	05722694.tif
	05722695.tif
	05722696.tif
	05722697.tif
	05722698.tif
	05722699.tif
	05722700.tif
	05722701.tif
	05722702.tif
	05722703.tif
	05722705.tif
	05722706.tif
	05722706a.tif
	05722707.tif
	05722708.tif
	05722709.tif
	05722710.tif
	05722711.tif
	05722712.tif
	05722713.tif
	05722714.tif
	05722715.tif
	05722716.tif
	05722717.tif
	05722718.tif
	05722719.tif
	05722720.tif
	05722721.tif
	05722722.tif
	05722723.tif
	05722724.tif
	05722725.tif
	05722726.tif
	05722727.tif
	05722728.tif
	05722729.tif
	05722730.tif
	05722731.tif
	05722732.tif
	05722733.tif
	05722734.tif
	05722735.tif
	05722736.tif
	05722737.tif
	05722738.tif
	05722739.tif
	05722740.tif
	05722741.tif
	05722742.tif
	05722743.tif
	05722744.tif
	05722745.tif
	05722746.tif
	05722747.tif
	05722748.tif
	05722749.tif
	05722750.tif
	05722751.tif
	05722752.tif
	05722753.tif
	05722754.tif
	05722755.tif
	05722756.tif
	05722757.tif
	05722758.tif
	05722759.tif
	05722760.tif
	05722761.tif
	05722762.tif
	05722763.tif
	05722764.tif
	05722765.tif
	05722766.tif
	05722767.tif
	05722768.tif
	05722769.tif
	05722770.tif
	05722771.tif
	05722772.tif
	05722773.tif
	05722774.tif
	05722775.tif
	05722776.tif
	05722777.tif
	05722778.tif
	05722779.tif
	05722780.tif
	05722781.tif
	05722782.tif
	05722783.tif
	05722784.tif
	05722785.tif
	05722786.tif
	05722787.tif
	05722788.tif
	05722789.tif
	05722790.tif
	05722791.tif
	05722792.tif
	05722793.tif
	05722794.tif
	05722795.tif
	05722796.tif
	05722797.tif
	05722798.tif
	05722799.tif
	05722800.tif
	05722801.tif
	05722802.tif
	05722803.tif
	05722804.tif
	05722805.tif
	05722806.tif
	05722807.tif
	05722808.tif
	05722809.tif
	05722810.tif
	05722811.tif
	05722812.tif
	05722813.tif
	05722814.tif
	05722815.tif
	05722816.tif
	05722817.tif
	05722818.tif
	05722819.tif
	05722820.tif
	05722821.tif
	05722822.tif
	05722823.tif
	05722824.tif
	05722825.tif
	05722826.tif
	05722827.tif
	05722828.tif
	05722829.tif
	05722831.tif
	05722832.tif
	05722832a.tif
	05722833.tif
	05722834.tif
	05722835.tif
	05722836.tif
	05722837.tif
	05722838.tif
	05722839.tif
	05722840.tif
	05722841.tif
	05722842.tif
	05722843.tif
	05722845.tif
	05722846.tif
	05722846a.tif
	05722847.tif
	05722848.tif
	05722849.tif
	05722850.tif
	05722851.tif
	05722852.tif
	05722853.tif
	05722854.tif
	05722855.tif
	05722856.tif
	05722857.tif
	05722858.tif
	05722859.tif
	05722860.tif
	05722861.tif
	05722862.tif
	05722863.tif
	05722864.tif

